skip to main content


Search for: All records

Creators/Authors contains: "Stassun, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. RV Tau variables are a subclass of post-Asymptotic Giant Branch stars in binary systems surrounded by a circumbinary disk. Their signature light curves display alternating deep and shallow minima due to pulsations. The RVb-type subset exhibits an additional longer brightness modulation due to disk occultation. It has been established that binarity plays a key role in the dynamics and evolution of this short-lived post-AGB phase however the interconnection of the different physical components in these systems is still not well understood. We present multiwavelength observations of the prototypical RVb variable U Mon (mean Vmag ~6.4; D ~1 kpc)from XMM-Newton, SMA, DASCH, and AAVSO. U Mon has a pulsation period of 91.48 days and a longer brightness modulation period of 2451 days, consistent with the radial-velocity binary orbital period. We estimated the mass of the binary and the orbital semi-major axis which is consistent with the interaction of the binary with the inner edge of the circumbinary disk. U Mon hosts a 10 G magnetic field at its stellar surface which may be linked to X-rays detected by XMM-Newton. The X-ray emission is characteristic of a hot plasma (10 MK) with L/L~10. Based on our SMA observations, U Mon has a highly-inclined extended disk. From U Mon's combined DASCH and AAVSO data, there is evidence that U Mon has an even longer trend possibly due to inner-disk precession. We predict that the next deepest long-term minimum will be within the next decade. 
    more » « less
  2. We use the first release of the SDSS/MaStar stellar library comprising ∼9000, high S/N spectra, to calculate integrated spectra of stellar population models. The models extend over the wavelength range 0.36-1.03 μm and share the same spectral resolution (R~1800) and flux calibration as the SDSS-IV/MaNGA galaxy data. The parameter space covered by the stellar spectra collected thus far allows the calculation of models with ages and chemical composition in the range t>200 Myr, -2 < [Z/H] < + 0.35, which will be extended as MaStar proceeds. Notably, the models include spectra for dwarf Main Sequence stars close to the core H-burning limit, as well spectra for cold, metal-rich giants. Both stellar types are crucial for modelling λ >0.7μm absorption spectra. Moreover, a better parameter coverage at low metallicity allows the calculation of models as young as 500 Myr and the full account of the Blue Horizontal Branch phase of old populations. We present models adopting two independent sets of stellar parameters (Teff, logg, [Z/H]). In a novel approach, their reliability is tested ’on the fly’ using the stellar population models themselves. We perform tests with Milky Way and Magellanic Clouds globular clusters, finding that the new models recover their ages and metallicities remarkably well, with systematics as low as a few per cent for homogeneous calibration sets. We also fit a MaNGA galaxy spectrum, finding residuals of the order of a few per cent comparable to the state-of-art models, but now over a wider wavelength range. 
    more » « less
  3. null (Ed.)
    ABSTRACT We report on the discovery and validation of a two-planet system around a bright (V  = 8.85 mag) early G dwarf (1.43  R⊙, 1.15  M⊙, TOI 2319) using data from NASA’s Transiting Exoplanet Survey Satellite (TESS). Three transit events from two planets were detected by citizen scientists in the month-long TESS light curve (sector 25), as part of the Planet Hunters TESS project. Modelling of the transits yields an orbital period of $11.6264 _{ - 0.0025 } ^ { + 0.0022 }$ d and radius of $3.41 _{ - 0.12 } ^ { + 0.14 }$ R⊕ for the inner planet, and a period in the range 19.26–35 d and a radius of $5.83 _{ - 0.14 } ^ { + 0.14 }$ R⊕ for the outer planet, which was only seen to transit once. Each signal was independently statistically validated, taking into consideration the TESS light curve as well as the ground-based spectroscopic follow-up observations. Radial velocities from HARPS-N and EXPRES yield a tentative detection of planet b, whose mass we estimate to be $11.56 _{ - 6.14 } ^ { + 6.58 }$ M⊕, and allow us to place an upper limit of 27.5 M⊕ (99 per cent confidence) on the mass of planet c. Due to the brightness of the host star and the strong likelihood of an extended H/He atmosphere on both planets, this system offers excellent prospects for atmospheric characterization and comparative planetology. 
    more » « less
  4. null (Ed.)
    ABSTRACT We report on the discovery and validation of TOI 813 b (TIC 55525572 b), a transiting exoplanet identified by citizen scientists in data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant ($R_\star =1.94\, R_\odot$, $M_\star =1.32\, M_\odot$). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of $2\, M_{\rm Jup}$ (99 per cent confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of $83.8911 _{ - 0.0031 } ^ { + 0.0027 }$ d, a planet radius of 6.71 ± 0.38 R⊕ and a semimajor axis of $0.423 _{ - 0.037 } ^ { + 0.031 }$ AU. The planet’s orbital period combined with the evolved nature of the host star places this object in a relatively underexplored region of parameter space. We estimate that TOI 813 b induces a reflex motion in its host star with a semi-amplitude of ∼6 m s−1, making this a promising system to measure the mass of a relatively long-period transiting planet. 
    more » « less
  5. Aims . We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object. Methods . Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by. Results . SN 2016hnk is consistent with being a subluminous ( M B  = −16.7 mag, s B V =0.43 ± 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca  II ] λ λ 7291,7324 doublet with a Doppler shift of 700 km s −1 . Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass ( M Ch ) carbon-oxygen white dwarf that produced 0.108 M ⊙ of 56 Ni. Our modeling suggests that the narrow [Ca  II ] features observed in the nebular spectrum are associated with 48 Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the M Ch limit. 
    more » « less
  6. null (Ed.)
    We report the detection of a transiting super-Earth-sized planet ( R = 1.39 ± 0.09 R ⊕ ) in a 1.4-day orbit around L 168-9 (TOI-134), a bright M1V dwarf ( V = 11, K = 7.1) located at 25.15 ± 0.02 pc. The host star was observed in the first sector of the Transiting Exoplanet Survey Satellite (TESS) mission. For confirmation and planet mass measurement purposes, this was followed up with ground-based photometry, seeing-limited and high-resolution imaging, and precise radial velocity (PRV) observations using the HARPS and Magellan /PFS spectrographs. By combining the TESS data and PRV observations, we find the mass of L 168-9 b to be 4.60 ± 0.56 M ⊕ and thus the bulk density to be 1.74 −0.33 +0.44 times higher than that of the Earth. The orbital eccentricity is smaller than 0.21 (95% confidence). This planet is a level one candidate for the TESS mission’s scientific objective of measuring the masses of 50 small planets, and it is one of the most observationally accessible terrestrial planets for future atmospheric characterization. 
    more » « less
  7. We report the discovery of a Neptune-like planet (LP 714-47 b, P = 4.05204 d, m b = 30.8 ± 1.5 M ⊕ , R b = 4.7 ± 0.3 R ⊕ ) located in the “hot Neptune desert”. Confirmation of the TESS Object of Interest (TOI 442.01) was achieved with radial-velocity follow-up using CARMENES, ESPRESSO, HIRES, iSHELL, and PFS, as well as from photometric data using TESS, Spitzer , and ground-based photometry from MuSCAT2, TRAPPIST-South, MONET-South, the George Mason University telescope, the Las Cumbres Observatory Global Telescope network, the El Sauce telescope, the TÜBİTAK National Observatory, the University of Louisville Manner Telescope, and WASP-South. We also present high-spatial resolution adaptive optics imaging with the Gemini Near-Infrared Imager. The low uncertainties in the mass and radius determination place LP 714-47 b among physically well-characterised planets, allowing for a meaningful comparison with planet structure models. The host star LP 714-47 is a slowly rotating early M dwarf ( T eff = 3950 ± 51 K) with a mass of 0.59 ± 0.02 M ⊙ and a radius of 0.58 ± 0.02 R ⊙ . From long-term photometric monitoring and spectroscopic activity indicators, we determine a stellar rotation period of about 33 d. The stellar activity is also manifested as correlated noise in the radial-velocity data. In the power spectrum of the radial-velocity data, we detect a second signal with a period of 16 days in addition to the four-day signal of the planet. This could be shown to be a harmonic of the stellar rotation period or the signal of a second planet. It may be possible to tell the difference once more TESS data and radial-velocity data are obtained. 
    more » « less
  8. ABSTRACT

    HD 62658 (B9p V) is a little-studied chemically peculiar star. Light curves obtained by the Kilodegree Extremely Little Telescope (KELT) and Transiting Exoplanet Survey Satellite (TESS) show clear eclipses with a period of about 4.75 d, as well as out-of-eclipse brightness modulation with the same 4.75 d period, consistent with synchronized rotational modulation of surface chemical spots. High-resolution ESPaDOnS circular spectropolarimetry shows a clear Zeeman signature in the line profile of the primary; there is no indication of a magnetic field in the secondary. PHOEBE modelling of the light curve and radial velocities indicates that the two components have almost identical masses of about 3 M⊙. The primary’s longitudinal magnetic field 〈Bz〉 varies between about +100 and −250 G, suggesting a surface magnetic dipole strength Bd = 850 G. Bayesian analysis of the Stokes V profiles indicates Bd = 650 G for the primary and Bd < 110 G for the secondary. The primary’s line profiles are highly variable, consistent with the hypothesis that the out-of-eclipse brightness modulation is a consequence of rotational modulation of that star’s chemical spots. We also detect a residual signal in the light curve after removal of the orbital and rotational modulations, which might be pulsational in origin; this could be consistent with the weak line profile variability of the secondary. This system represents an excellent opportunity to examine the consequences of magnetic fields for stellar structure via comparison of two stars that are essentially identical with the exception that one is magnetic. The existence of such a system furthermore suggests that purely environmental explanations for the origin of fossil magnetic fields are incomplete.

     
    more » « less